
A self-avoiding walk model of random copolymer adsorption

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys. A: Math. Gen. 32 469

(http://iopscience.iop.org/0305-4470/32/3/004)

Download details:

IP Address: 171.66.16.105

The article was downloaded on 02/06/2010 at 07:37

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/32/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.32 (1999) 469–477. Printed in the UK PII: S0305-4470(99)95506-3

A self-avoiding walk model of random copolymer adsorption

E Orlandini†, M C Tesi‡ and S G Whittington§
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Abstract. We consider a model of random copolymer adsorption in which a self-avoiding walk
interacts with a hypersurface defining a half-space to which the walk is confined. Each vertex of
the walk is randomly labelled with a real variable which determines the strength of the interaction
of that vertex with the hypersurface. We show that the thermodynamic limit of the quenched
average free energy exists and is equal to the thermodynamic limit of the free energy for almost
all fixed labellings, so the system is self-averaging. In addition we show that the system exibits a
phase transition and we discuss the connection between the annealed and quenched versions of the
problem.

1. Introduction

Self-avoiding walk models of polymer adsorption have been studied for a number of years.
For the homopolymer case the standard model is a self-avoiding walk on a lattice where the
walk starts at the origin, is confined to a half-space defined by a plane containing the origin,
and where there is an energy associated with vertices of the walk which are in this plane. This
model has been shown to exhibit a phase transition (Hammersleyet al 1982).

More recently there have been a number of studies of the statistical mechanics of copolymer
adsorption (see for instance, Cosgroveet al1990, Wanget al1993, Joanny 1994, Sommer and
Daoud 1995, Sommeret al1996, Whittington 1998). When the copolymer is random one must
distinguish between theannealedcase (where the partition function is averaged before taking
the logarithm to obtain the free energy) and thequenchedcase (where the logarithm of the
partition function is averaged). The case ofperiodic quenched randomnesshas been examined
by Grossberget al (1994). The non-periodic case of quenched randomness has been studied
by Garelet al (1989) and by Gutman and Chakraborty (1994, 1995) using the replica trick, and
by Bolthausen and den Hollander (1997) and Biskup and den Hollander (1998) using rigorous
arguments for a partially directed random walk model. In this paper we shall be concerned
primarily with non-periodic quenched randomness.

Recently there has been considerable interest in the problem ofcollapseof a copolymer
with quenched randomness (see for instance, Kantor and Kardar 1994, Grassberger and Hegger
1995, Golding and Kantor 1997) and any progress which can be made in the study of the
adsorption of quenched random copolymers might produce useful techniques in the study of
the corresponding collapse problem.

In this paper we investigate a self-avoiding walk model of the adsorption of quenched
random copolymers. Our main result is that the system is thermodynamically self-averaging.
That is, we prove that the limiting quenched average free energy exists and is equal to the
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limiting free energy for a fixed quench for almost all quenches. In addition we show that the
system has a phase transition and we derive bounds on the behaviour of the quenched average
free energy. Finally we explore the connection between the annealed and quenched cases.

2. Definitions and statement of results

We consider the hypercubic latticeZd , with coordinate system(x, y, . . . , z). An n-edge self-
avoiding walkis an ordered sequence ofn + 1 vertices,i = 0, 1, 2, . . . , n such that the zeroth
vertex is at the origin, neighbouring pairs of vertices in the sequence are unit distance apart,
and all vertices are distinct. Neighbouring pairs of vertices in the sequence are connected by
edges. We writecn for the number of distinctn-edge self-avoiding walks. We call a self-
avoiding walk apositive walkif no vertex hasz-coordinate less than zero, and we writec+

n for
the number ofn-edge positive walks. Hammersley (1957) proved that the limit

0< lim
n→∞ n

−1 logcn ≡ κd <∞ (2.1)

exists, and Whittington (1975) showed that

lim
n→∞ n

−1 logc+
n = κd. (2.2)

A convenient model of polymer adsorption is to consider a positive walk which interacts with
the hyperplanez = 0. We writec+

n(v) for the number ofn-edge positive walks withv + 1
vertices in the hyperplanez = 0 and define the partition function

Z+
n(α) =

∑
v

c+
n(v)e

αv. (2.3)

Hammersleyet al (1982) have established the existence of the limit

κ+(α) = lim
n→∞ n

−1 logZ+
n(α) (2.4)

for all α <∞ and they showed thatκ+(α) is a continuous, convex, monotone non-decreasing
function ofα with a singularity atαc > 0. Forα 6 αc, κ+(α) = κd .

We consider a general model of copolymer adsorption in which theith vertex (i =
1, 2, . . . , n) of the walk is assigned a real numberχi , 06 χi 6 M <∞, chosen independently
from a (normalized) probability distribution4, such that the mean value ofχi is positive. For
a given walkw we write1i(w) = 1 if the ith vertex is in the hyperplanez = 0, and zero
otherwise. The zeroth vertex is required to be inz = 0, since we consider positive walks. We
write χ for the sequenceχ1, χ2, . . . , χn, and define the partition function

Z+
n(α|χ) =

∑
eα

∑n
i=1 χi1i(w) (2.5)

where the first sum is over alln-edge positive walks. Sinceχi > 0, a positive value ofαmeans
that vertices either have no interaction with the surface (χi = 0), or are attracted to the surface
(χi > 0). Similarly, a negative value ofα means that vertices either have no interaction with
the surface or are repelled by the surface. For a given walkw we can relabel the verticesi > 1
with 1i(w) = 1 asi1, i2, . . . and definec+

n(i1, i2, . . .) to be the number ofn-edge positive
walks with only the vertices 0, i1, i2, . . . in z = 0. Then we can rewrite equation (2.5) as

Z+
n(α|χ) =

∑
{i1,i2...}

c+
n(i1, i2, . . .)e

α
∑

j χij . (2.6)

This formulation is quite general and includes several models which have previously appeared
in the literature. For instance ifχi = 0 or 1 then we obtain a copolymer with two types of
vertices, only one of which interacts with the surface (Whittington 1998). If4 is a truncated
Gaussian the model is related to the work of Srebniket al (1996).

Our main result is that the free energy of the system is self-averaging, and we state this in
the following theorem.
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Theorem 2.1.Let 〈. . .〉 represent an average with respect to the distribution4. The limit

lim
n→∞〈n

−1 logZ+
n(α|χ)〉 ≡ κ̄(α) (2.7)

exists for allα <∞. Moreover, the limit

lim
n→∞ n

−1 logZ+
n(α|χ) ≡ κ(α|χ) (2.8)

exists and

κ(α|χ) = κ̄(α) (2.9)

for all α <∞ for almost all sequencesχ , where theχi are chosen independently from4.

We call κ̄(α) thequenched average free energyof the system. We also show thatκ̄(α)
is a non-analytic function ofα so that the system exibits a phase transition associated with
adsorption.

3. Proof of results

In this section we first introduce unfolded walks and loops, which play a role in the proof of
theorem 2.1. We then prove several lemmas about the quenched average free energies of loops
and positive walks and derive upper and lower bounds on the partition functionZ+

n(α|χ)which
lead to the proof of theorem 2.1.

We say that ann-edge positive walk isx-unfoldedif

0= x0 < xi 6 xn (3.1)

for all i > 0. Similarly, we say that a positive walk isz-unfoldedif

0= z0 6 zi < zn (3.2)

for all i < n. We writec‡
n for the number ofn-edgex-unfolded walks andc‡

n(i1, i2, . . .) for
the number ofn-edgex-unfolded walks with vertices 0, 1, i1, i2, . . . in the hyperplanez = 0.
Clearly

c‡
n(i1, i2, . . .) 6 c+

n(1, i1, i2, . . .). (3.3)

To every positive walk there corresponds a uniquex-unfolded walk with one additional edge,
obtained by successive reflections in hyperplanes, as described in Hammersley and Welsh
(1962), followed by translation by unit distance in the positivex-direction and the addition of
an edge from(0, 0, . . . ,0) to (1, 0, . . . ,0). This operation increases the number of vertices
in z = 0 by one. The unfolding transformation is not bijective but, using the arguments of
Hammersley and Welsh (1962)

c+
n(i1, i2, . . .) 6 eO(

√
n)c

‡
n+1(i1, i2, . . .). (3.4)

We define aloop to be a positive walk which satisfies the inequalities in (3.1) and the
following condition:

0= z0 = zn 6 zi ∀i. (3.5)

We write ln for the number ofn-edge loops andln(i1, i2, . . .) for the number ofn-edge loops
with vertices 0, 1, i1, i2, . . . in z = 0.

For a given sequenceχ ≡ χ1, χ2, . . . , χn we write the partition functions of unfolded
walks and loops as

Z‡
n(α|χ) =

∑
{i1,i2,...}

c‡
n(i1, i2, . . .)e

α
∑

j χij (3.6)
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and

Ln(α|χ) =
∑
{i1,i2,...}

ln(i1, i2, . . .)e
α
∑

j χij . (3.7)

In the first lemma we prove the existence of an average free energy for loops.

Lemma 3.1. The following limit exists for allα <∞
lim
n→∞〈n

−1 logLn(α|χ)〉 ≡ κ̄(α). (3.8)

Proof. Consider anm-edge loop and ann-edge loop and translate then-edge loop so that its
zeroth vertex is coincident with themth vertex of them-edge loop. The resulting object is a
loop withm + n edges so that we have the inequality

lm(i1, i2, . . .)ln(j1, j2, . . .) 6 lm+n(i1, i2, . . . , m + 1, m + j1, m + j2, . . .). (3.9)

Letχ(m) ≡ {χ(m)i } be the sequence ofχ values associated with them-loop andχ(n) ≡ {χ(n)i } be
the sequence ofχ values associated with then-loop. We writeχ(m)+(n) for the corresponding
sequence associated with the concatenation of the two sequences. Multiplying both sides of

(3.9) by eα(
∑

k χ
(m)
ik

+
∑

k χ
(n)
jk
), and summing over appropriate indices we obtain the inequality

Lm(α|χ(m))Ln(α|χ(n)) 6 max[1, e−Mα]Lm+n(α|χ(m)+(n)). (3.10)

Taking logarithms and averaging (3.10) over the random sequencesχ(m) andχ(n) we obtain

〈logLm(α|χ(m))〉 + 〈logLn(α|χ(n))〉 6 log(max[1, e−Mα]) + 〈logLm+n(α|χ(m+n))〉. (3.11)

SinceLn(α|χ(n)) 6 max[(2d)n, (2d)neαMn], the super-additive inequality (3.11) implies
(Hille 1948) the existence of the limit in equation (3.8) for allα <∞. �

In the next lemma we establish a relation between the quenched average free energies of
loops and positive walks. The general idea is to notice that loops are a subset of positive walks,
and to construct loops by an operation on suitably unfolded walks.

Lemma 3.2. The quenched average free energy of positive walks exists and is equal to that of
loops.

Proof. Inclusion implies the inequalities

Ln(α|χ) 6 Z‡
n(α|χ) 6 Z+

n(α|χ). (3.12)

To obtain a bound in the other direction we use a process of successive unfolding and reflection.
Consider ann-edge positive walkω. Letm = max[i|1i = 1]. If m = n the positive walk starts
and ends inz = 0 and is either a loop or can be converted to a loop byx-unfolding and adding
an edge. This would increase the number of vertices inz = 0 by one. Ifm 6= n, disconnect
the walkω at themth vertex to form two subwalksω1 andω2. x-unfold both subwalks and
reconnect them. This operation can add up to two additional vertices in the hyperplanez = 0
but otherwise does not change which vertices are inz = 0. Letzn be thez-coordinate of the
final vertex of the walk. Consider the following cases:

(1) If zn=1, add an edge so that the(n + 1)th vertex is inz = 0.
(2) Otherwise unfold the subwalk from themth to thenth vertex in thez-direction, to satisfy

the condition (3.2). Letzn be the newz-coordinate of thenth vertex. Ifzn is even, letm′

be the vertex where the walk last crosses the hyperplanez = zn/2. Disconnect the walk
at this vertex, to form two subwalksω3 andω4, x-unfold the two subwalks to formω′3 and
ω′4, reflect the final subwalkω′4 in the planez = zn/2 and reconnect the subwalks. This
walk has its final vertex inz = 0.
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(3) If in (2) zn is odd, letm′ be the last vertex where the walk crosses the plane(zn + 1)/2.
Disconnect the walk at this vertex,x-unfold the two subwalks, reflect the final subwalk
in the planez = (zn + 1)/2 and reconnect the two subwalks. This walk will have its final
vertex inz = 1. Add an edge so that the new final vertex is in the planez = 0.

These operations involve at most five unfolding operations and the addition of at most five
edges and three vertices in the planez = 0. Hence

Z+
n(α|χ) 6 eO(

√
n) max[1, e3αM ] max[Ln(α|χ), Ln+1(α|χ ′), . . . Ln+5(α|χ ′′)] (3.13)

whereχ ′, . . . , χ ′′ represent augmentations of the labellingχ . Taking logarithms, dividing by
n and averaging over the labellings in equations (3.12) and (3.13) gives

lim
n→∞〈n

−1 logZ+
n(α|χ)〉 = κ̄(α). (3.14)

�

In the next lemma we derive a result about theα-dependence ofZ+
n(α|χ) for α 6 0.

Lemma 3.3. For α 6 0

lim
n→∞ n

−1 logZ+
n(α|χ) = κd (3.15)

for every labellingχ .

Proof. ClearlyZ+
n(α|χ) is a monotone non-decreasing function ofα so

Z+
n(α|χ) 6 Z+

n(0|χ) (3.16)

for everyα 6 0, andZ+
n(0|χ) = c+

n , independent ofχ , so that

lim sup
n→∞

n−1 logZ+
n(α|χ) 6 κd (3.17)

for all α 6 0. Each(n− 1)-edge positive walk can be converted into ann-edge positive walk
with only one vertex in the hyperplanez = 0 by translating the walk through unit distance in
the positivez direction, and adding an additional edge joining(0, 0, . . . ,0) to (0, 0, . . . ,1),
and this transformation is a bijection. The partition functionZ+

n(α|χ) can be bounded below
by the number ofn-edge positive walks with only the zeroth vertex inz = 0 which, by the
above argument is equal toc+

n−1. Hence

lim inf
n→∞ n−1 logZ+

n(α|χ) > lim
n→∞ n

−1 logc+
n−1 = κd (3.18)

and the lemma follows from (3.17) and (3.18). �

Let chn(i1, i2, . . .) be the number ofn-edge walks withz0 = h, no vertices with negative
z-coordinate, and verticesi1, i2, . . . in z = 0. We define the partition function

Zhn(α|χ) =
∑
{i1,i2,...}

chn(i1, i2, . . .)e
α
∑

j χij (3.19)

and, for fixedα, we define

Z∗n(α|χ) = max
h
Zhn(α|χ). (3.20)

Lemma 3.4. The following equality holds:

lim
n→∞〈n

−1 logZ∗n(α|χ)〉 = lim
n→∞〈n

−1 logZ+
n(α|χ)〉. (3.21)
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Proof. ClearlyZ∗n(α|χ) > Z+
n(α|χ). Let h0 be the value ofh which maximizesZhn(α|χ) so

thatZ∗n(α|χ) = Zh0
n (α|χ). Notice thath0 will in general depend onn, α andχ . If h0 = 0 then

Z∗n(α|χ) = Z+
n(α|χ). Suppose thath0 6= 0. Then each walk either has no vertices inz = 0 or

i1 > 1. To derive an upper bound we can disconnect the walk ati1 into two subwalks. Suppose
that the two labellings of the two subwalks areχ(1) andχ(2). Both subwalks are positive walks
so we have

Zh0
n (α|χ) 6 cn +

∑
i1>1

∑
i2,i3,...

ch0
n (i1, i2, . . .)e

α
∑

j χij

6 cn +
∑
i1>1

max[eαM, 1]Z+
i1
(0|χ̄ (1))Z+

n−i1(α|χ(2))

6 eκdn+o(n) + eo(n) max
m

[Z+
m(0|χ̄ (1))Z+

n−m(α|χ(2))] (3.22)

where the bar on̄χ(1) indicates that the labelling is being read in reverse order. Ifα 6 0
Z+
n−m(α|χ(2)) is bounded above byZ+

n−m(0|χ(2)) so that (3.21) is an immediate consequence,
when we make use of lemma 3.3. Forα > 0,Z+

m(0|χ(2)) 6 Z+
m(α|χ(2)). Letm∗ be the value

of m which maximizes the final term in (3.22). Then, taking logarithms, dividing byn and
averaging over labellings, we have the bound

〈n−1 logZ∗n(α|χ)〉 6 max[κd, 〈n−1 logZ+
m∗(α|χ)〉 + 〈n−1 logZ+

n−m∗(α|χ)〉] + o(1)

= max

[
κd,

m∗ + (n−m∗)
n

κ̄(α)

]
+ o(1)

= κ̄(α) + o(1) (3.23)

where we have used lemma 3.2 and the fact thatκ̄(α) is a non-decreasing function ofα. The
result follows on lettingn go to infinity. �

The next lemma gives a lower bound on the free energy of a system with a given fixed
quench.

Lemma 3.5.

κ̄(α) 6 lim inf
n→∞ n−1 logZ+

n(α|χ0) (3.24)

for anyα <∞ and for almost all fixed quenchesχ0.

Proof. For fixedα <∞ and fixedm letn = mp +q with 06 q < m.We consider a subset of
n-edge positive walks made up of a concatenation ofp m-edge loops, labelledi = 1, 2, . . . , p
and a finalq-edge loop, labelledp + 1. Writingχ0 = χ(1) + χ(2) + · · · + χ(p+1), whereχ(i) is
the labelling of theith loop, andχ0 is the labelling of the concatenated loops, we have

Z+
n(α|χ0)) >

[ p∏
i=1

Lm(α|χ(i))
]
Lq(α|χ(p+1)). (3.25)

Taking logarithms and dividing byn we obtain

n−1 logZ+
n(α|χ0) >

[
1

m(p + q/m)

p∑
i=1

logLm(α|χ(i))
]

+ n−1 logLq(α|χ(p+1)). (3.26)

Lettingp→∞ with m fixed we obtain

lim inf
n→∞ n−1 logZ+

n(α|χ0) > lim sup
p→∞

p−1
p∑
i=1

m−1 logLm(α|χ(i)) = 〈m−1 logLm(α|χ)〉

(3.27)
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almost surely, where the equality comes from application of the strong law of large numbers.
Lettingm→∞ and using lemma 3.2 gives (3.24). �

In the next lemma we give a corresponding upper bound.

Lemma 3.6.

κ̄(α) > lim sup
n→∞

n−1 logZ+
n(α|χ0) (3.28)

for anyα <∞ and for almost all fixed quenchesχ0.

Proof. For fixedα < ∞ and fixedm we writen = mp + q with 0 6 q < m. We divide an
n-edge positive walk intop subwalks of lengthm and a final subwalk of lengthq. Again we
write χ0 = χ(1) + χ(2) + · · · + χ(p+1), whereχ(i) is the labelling of theith subwalk, andχ0 is
the labelling of then-edge positive walk. The subdivision gives the inequality

Z+
n(α|χ0) 6 Z+

m(α|χ(1))
[ p∏
i=2

Z∗m(α|χ(i))
]
Z∗q(α|χ(p+1)). (3.29)

Bounding the last term, taking logarithms, and dividing byn gives

logZ+
n(α|χ0)

n
6
∑p

i=1m
−1 logZ∗m(α|χ(i))
p + q/m

+
max[q log(2d), q log(2d) + αMq]

m(p + q/m)
(3.30)

where we have used the fact thatZ+
m 6 Z∗m. Lettingp→∞ with m fixed we have

lim sup
n→∞

n−1 logZ+
n(α|χ0) 6 lim inf

p→∞ p−1
p∑
i=1

m−1 logZ∗m(α|χi) = 〈m−1 logZ∗m(α|χ)〉 (3.31)

almost surely, where the last equality comes from an application of the strong law of large
numbers. Lettingm→∞ and using lemma 3.4 gives (3.28). �

Lemmas 3.5 and 3.6 together prove theorem 2.1.
We now turn to a discussion of the adsorption transition in such random systems.

Theorem 2.1 tells us that the limit defininḡκ(α) exists and we now derive bounds on its
behaviour.

Lemma 3.7. For α > 0

κ̄(α) > max[κd, κd−1 + αµ] (3.32)

whereµ is the expected value ofχi .

Proof. Consider ann-edge walk labelled with a sequenceχ = χ1, χ2, . . . . SinceZ+
n(α|χ)

is monotone non-decreasing we haveZ+
n(α|χ) > Z+

n(0|χ) for all α > 0. In addition
Z+
n(α|χ) > c+

n(1, 2, . . . , n)e
α
∑n

i=1 χi , corresponding to all vertices being inz = 0. Taking
logarithms, dividing byn and lettingn go to infinity we obtain

κ(α|χ) > max

[
κd, lim

n→∞

(
n−1 logc+

n(1, 2, . . . , n) + αn−1
n∑
i=1

χi

)]
(3.33)

for any labellingχ which satisfies equation (2.9). Then using (2.9) we have (3.32). �
Note that the restrictions placed on4 ensure thatµ > 0. Sinceκ̄(α) is constant forα 6 0

(from lemma 3.3) but not forα > (κd − κd−1)/µ, κ̄(α) is a non-analytic function ofα and the
system exibits a phase transition atαq where 06 αq 6 (κd − κd−1)/µ. Sinceκ̄(α) 6 κ+(α)

(sinceχi > 0) we have the improved lower bound 0< αc 6 αq .
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Finally we discuss the relation between the annealed and quenched cases. The annealed
free energy is defined as

κa(α) = lim
n→∞ n

−1 log〈Z+
n(α|χ)〉 (3.34)

where the limit can be shown to exist by a suitable modification of the methods used to prove
lemmas 3.1, 3.2 and 3.4, where the averaging is inserted at a suitable stage, and where one
makes use of the independence of the labelling of subwalks. From lemma 3.3 it is clear that
κa(α) = κ̄(α) for α 6 0. In addition, by the arithmetic mean—geometric mean inequality,
κa(α) > κ̄(α) for all α. (Recall our choice of sign in our definition of the free energy.) Hence
κa(α) is a non-analytic function ofα and has a singularity atαa satisfying 0< αc 6 αa 6 αq ,
where we have made use of the obvious inequalityZ+

n(α|χ) 6 Z+
n(α) for any positiveα.

Clearlyκa(α) = κ̄(α) for all α 6 αa.

4. Discussion

We have investigated a self-avoiding walk model of random copolymer adsorption and
have shown that the limiting quenched average free energy exists. Moreover the system is
thermodynamically self-averaging in that the limiting quenched average free energy is equal
to the limiting free energy for almost all comonomer sequences. Although our proof of self-
averaging is for the case of independently labelled vertices, it could be extended to other
labelling schemes for which the strong law of large numbers applies. These results have some
practical importance in that they show that one has some hope of studying the system by Monte
Carlo calculations on a randomly chosen set of comonomer sequences.

The limiting quenched average free energy is non-analytic so the system exhibits a phase
transition. We have also considered the annealed case and we have shown that the limiting
annealed and quenched average free energies are identical at high temperatures (i.e. in the
desorbed phase).
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