A self-avoiding walk model of random copolymer adsorption

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 32469
(http://iopscience.iop.org/0305-4470/32/3/004)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:37

Please note that terms and conditions apply.

A self-avoiding walk model of random copolymer adsorption

E Orlandini $\dagger, ~ M ~ C ~ T e s i ~ ¥ ~ a n d ~ S ~ G ~ W h i t t i n g t o n § ~$
\dagger CEA-Saclay, Service de Physique Théorique, F-91191 Gif-sur-Yvette Cedex, France
\ddagger Université de Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex, France
§ Department of Chemistry, University of Toronto, Toronto, Canada M5S 3H6

Received 29 June 1998

Abstract

We consider a model of random copolymer adsorption in which a self-avoiding walk interacts with a hypersurface defining a half-space to which the walk is confined. Each vertex of the walk is randomly labelled with a real variable which determines the strength of the interaction of that vertex with the hypersurface. We show that the thermodynamic limit of the quenched average free energy exists and is equal to the thermodynamic limit of the free energy for almost all fixed labellings, so the system is self-averaging. In addition we show that the system exibits a phase transition and we discuss the connection between the annealed and quenched versions of the problem.

1. Introduction

Self-avoiding walk models of polymer adsorption have been studied for a number of years. For the homopolymer case the standard model is a self-avoiding walk on a lattice where the walk starts at the origin, is confined to a half-space defined by a plane containing the origin, and where there is an energy associated with vertices of the walk which are in this plane. This model has been shown to exhibit a phase transition (Hammersley et al 1982).

More recently there have been a number of studies of the statistical mechanics of copolymer adsorption (see for instance, Cosgrove et al 1990, Wang et al 1993, Joanny 1994, Sommer and Daoud 1995, Sommer et al 1996, Whittington 1998). When the copolymer is random one must distinguish between the annealed case (where the partition function is averaged before taking the logarithm to obtain the free energy) and the quenched case (where the logarithm of the partition function is averaged). The case of periodic quenched randomness has been examined by Grossberg et al (1994). The non-periodic case of quenched randomness has been studied by Garel et al (1989) and by Gutman and Chakraborty $(1994,1995)$ using the replica trick, and by Bolthausen and den Hollander (1997) and Biskup and den Hollander (1998) using rigorous arguments for a partially directed random walk model. In this paper we shall be concerned primarily with non-periodic quenched randomness.

Recently there has been considerable interest in the problem of collapse of a copolymer with quenched randomness (see for instance, Kantor and Kardar 1994, Grassberger and Hegger 1995, Golding and Kantor 1997) and any progress which can be made in the study of the adsorption of quenched random copolymers might produce useful techniques in the study of the corresponding collapse problem.

In this paper we investigate a self-avoiding walk model of the adsorption of quenched random copolymers. Our main result is that the system is thermodynamically self-averaging. That is, we prove that the limiting quenched average free energy exists and is equal to the
limiting free energy for a fixed quench for almost all quenches. In addition we show that the system has a phase transition and we derive bounds on the behaviour of the quenched average free energy. Finally we explore the connection between the annealed and quenched cases.

2. Definitions and statement of results

We consider the hypercubic lattice Z^{d}, with coordinate system (x, y, \ldots, z). An n-edge selfavoiding walk is an ordered sequence of $n+1$ vertices, $i=0,1,2, \ldots, n$ such that the zeroth vertex is at the origin, neighbouring pairs of vertices in the sequence are unit distance apart, and all vertices are distinct. Neighbouring pairs of vertices in the sequence are connected by edges. We write c_{n} for the number of distinct n-edge self-avoiding walks. We call a selfavoiding walk a positive walk if no vertex has z-coordinate less than zero, and we write c_{n}^{+}for the number of n-edge positive walks. Hammersley (1957) proved that the limit

$$
\begin{equation*}
0<\lim _{n \rightarrow \infty} n^{-1} \log c_{n} \equiv \kappa_{d}<\infty \tag{2.1}
\end{equation*}
$$

exists, and Whittington (1975) showed that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log c_{n}^{+}=\kappa_{d} \tag{2.2}
\end{equation*}
$$

A convenient model of polymer adsorption is to consider a positive walk which interacts with the hyperplane $z=0$. We write $c_{n}^{+}(v)$ for the number of n-edge positive walks with $v+1$ vertices in the hyperplane $z=0$ and define the partition function

$$
\begin{equation*}
Z_{n}^{+}(\alpha)=\sum_{v} c_{n}^{+}(v) \mathrm{e}^{\alpha v} \tag{2.3}
\end{equation*}
$$

Hammersley et al (1982) have established the existence of the limit

$$
\begin{equation*}
\kappa^{+}(\alpha)=\lim _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}(\alpha) \tag{2.4}
\end{equation*}
$$

for all $\alpha<\infty$ and they showed that $\kappa^{+}(\alpha)$ is a continuous, convex, monotone non-decreasing function of α with a singularity at $\alpha_{c}>0$. For $\alpha \leqslant \alpha_{c}, \kappa^{+}(\alpha)=\kappa_{d}$.

We consider a general model of copolymer adsorption in which the i th vertex $(i=$ $1,2, \ldots, n)$ of the walk is assigned a real number $\chi_{i}, 0 \leqslant \chi_{i} \leqslant M<\infty$, chosen independently from a (normalized) probability distribution Ξ, such that the mean value of χ_{i} is positive. For a given walk w we write $\Delta_{i}(w)=1$ if the i th vertex is in the hyperplane $z=0$, and zero otherwise. The zeroth vertex is required to be in $z=0$, since we consider positive walks. We write χ for the sequence $\chi_{1}, \chi_{2}, \ldots, \chi_{n}$, and define the partition function

$$
\begin{equation*}
Z_{n}^{+}(\alpha \mid \chi)=\sum \mathrm{e}^{\alpha \sum_{i=1}^{n} \chi_{i} \Delta_{i}(w)} \tag{2.5}
\end{equation*}
$$

where the first sum is over all n-edge positive walks. Since $\chi_{i} \geqslant 0$, a positive value of α means that vertices either have no interaction with the surface ($\chi_{i}=0$), or are attracted to the surface ($\chi_{i}>0$). Similarly, a negative value of α means that vertices either have no interaction with the surface or are repelled by the surface. For a given walk w we can relabel the vertices $i \geqslant 1$ with $\Delta_{i}(w)=1$ as i_{1}, i_{2}, \ldots and define $c_{n}^{+}\left(i_{1}, i_{2}, \ldots\right)$ to be the number of n-edge positive walks with only the vertices $0, i_{1}, i_{2}, \ldots$ in $z=0$. Then we can rewrite equation (2.5) as

$$
\begin{equation*}
Z_{n}^{+}(\alpha \mid \chi)=\sum_{\left\{i_{1}, i_{2} \ldots\right\}} c_{n}^{+}\left(i_{1}, i_{2}, \ldots\right) \mathrm{e}^{\alpha \sum_{j} x_{i_{j}}} \tag{2.6}
\end{equation*}
$$

This formulation is quite general and includes several models which have previously appeared in the literature. For instance if $\chi_{i}=0$ or 1 then we obtain a copolymer with two types of vertices, only one of which interacts with the surface (Whittington 1998). If Ξ is a truncated Gaussian the model is related to the work of Srebnik et al (1996).

Our main result is that the free energy of the system is self-averaging, and we state this in the following theorem.

Theorem 2.1. Let $\langle\ldots\rangle$ represent an average with respect to the distribution Ξ. The limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)\right\rangle \equiv \bar{\kappa}(\alpha) \tag{2.7}
\end{equation*}
$$

exists for all $\alpha<\infty$. Moreover, the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \equiv \kappa(\alpha \mid \chi) \tag{2.8}
\end{equation*}
$$

exists and

$$
\begin{equation*}
\kappa(\alpha \mid \chi)=\bar{\kappa}(\alpha) \tag{2.9}
\end{equation*}
$$

for all $\alpha<\infty$ for almost all sequences χ, where the χ_{i} are chosen independently from Ξ.
We call $\bar{\kappa}(\alpha)$ the quenched average free energy of the system. We also show that $\bar{\kappa}(\alpha)$ is a non-analytic function of α so that the system exibits a phase transition associated with adsorption.

3. Proof of results

In this section we first introduce unfolded walks and loops, which play a role in the proof of theorem 2.1. We then prove several lemmas about the quenched average free energies of loops and positive walks and derive upper and lower bounds on the partition function $Z_{n}^{+}(\alpha \mid \chi)$ which lead to the proof of theorem 2.1.

We say that an n-edge positive walk is x-unfolded if

$$
\begin{equation*}
0=x_{0}<x_{i} \leqslant x_{n} \tag{3.1}
\end{equation*}
$$

for all $i>0$. Similarly, we say that a positive walk is z-unfolded if

$$
\begin{equation*}
0=z_{0} \leqslant z_{i}<z_{n} \tag{3.2}
\end{equation*}
$$

for all $i<n$. We write c_{n}^{\ddagger} for the number of n-edge x-unfolded walks and $c_{n}^{\ddagger}\left(i_{1}, i_{2}, \ldots\right.$) for the number of n-edge x-unfolded walks with vertices $0,1, i_{1}, i_{2}, \ldots$ in the hyperplane $z=0$. Clearly

$$
\begin{equation*}
c_{n}^{\ddagger}\left(i_{1}, i_{2}, \ldots\right) \leqslant c_{n}^{+}\left(1, i_{1}, i_{2}, \ldots\right) . \tag{3.3}
\end{equation*}
$$

To every positive walk there corresponds a unique x-unfolded walk with one additional edge, obtained by successive reflections in hyperplanes, as described in Hammersley and Welsh (1962), followed by translation by unit distance in the positive x-direction and the addition of an edge from $(0,0, \ldots, 0)$ to $(1,0, \ldots, 0)$. This operation increases the number of vertices in $z=0$ by one. The unfolding transformation is not bijective but, using the arguments of Hammersley and Welsh (1962)

$$
\begin{equation*}
c_{n}^{+}\left(i_{1}, i_{2}, \ldots\right) \leqslant \mathrm{e}^{\mathrm{O}(\sqrt{n})} c_{n+1}^{\ddagger}\left(i_{1}, i_{2}, \ldots\right) . \tag{3.4}
\end{equation*}
$$

We define a loop to be a positive walk which satisfies the inequalities in (3.1) and the following condition:

$$
\begin{equation*}
0=z_{0}=z_{n} \leqslant z_{i} \quad \forall i . \tag{3.5}
\end{equation*}
$$

We write l_{n} for the number of n-edge loops and $l_{n}\left(i_{1}, i_{2}, \ldots\right)$ for the number of n-edge loops with vertices $0,1, i_{1}, i_{2}, \ldots$ in $z=0$.

For a given sequence $\chi \equiv \chi_{1}, \chi_{2}, \ldots, \chi_{n}$ we write the partition functions of unfolded walks and loops as

$$
\begin{equation*}
Z_{n}^{\ddagger}(\alpha \mid \chi)=\sum_{\left\{i_{1}, i_{2}, \ldots\right\}} c_{n}^{\ddagger}\left(i_{1}, i_{2}, \ldots\right) \mathrm{e}^{\alpha \sum_{j} \chi_{i_{j}}} \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
L_{n}(\alpha \mid \chi)=\sum_{\left\{i_{1}, i_{2}, \ldots\right\}} l_{n}\left(i_{1}, i_{2}, \ldots\right) \mathrm{e}^{\alpha \sum_{j} x_{i_{j}}} \tag{3.7}
\end{equation*}
$$

In the first lemma we prove the existence of an average free energy for loops.
Lemma 3.1. The following limit exists for all $\alpha<\infty$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log L_{n}(\alpha \mid \chi)\right\rangle \equiv \bar{\kappa}(\alpha) \tag{3.8}
\end{equation*}
$$

Proof. Consider an m-edge loop and an n-edge loop and translate the n-edge loop so that its zeroth vertex is coincident with the m th vertex of the m-edge loop. The resulting object is a loop with $m+n$ edges so that we have the inequality
$l_{m}\left(i_{1}, i_{2}, \ldots\right) l_{n}\left(j_{1}, j_{2}, \ldots\right) \leqslant l_{m+n}\left(i_{1}, i_{2}, \ldots, m+1, m+j_{1}, m+j_{2}, \ldots\right)$.
Let $\chi^{(m)} \equiv\left\{\chi_{i}^{(m)}\right\}$ be the sequence of χ values associated with the m-loop and $\chi^{(n)} \equiv\left\{\chi_{i}^{(n)}\right\}$ be the sequence of χ values associated with the n-loop. We write $\chi^{(m)+(n)}$ for the corresponding sequence associated with the concatenation of the two sequences. Multiplying both sides of (3.9) by $\mathrm{e}^{\alpha\left(\sum_{k} \chi_{i_{k}}^{(m)}+\sum_{k} \chi_{j_{k}}^{(n)}\right)}$, and summing over appropriate indices we obtain the inequality

$$
\begin{equation*}
L_{m}\left(\alpha \mid \chi^{(m)}\right) L_{n}\left(\alpha \mid \chi^{(n)}\right) \leqslant \max \left[1, \mathrm{e}^{-M \alpha}\right] L_{m+n}\left(\alpha \mid \chi^{(m)+(n)}\right) . \tag{3.10}
\end{equation*}
$$

Taking logarithms and averaging (3.10) over the random sequences $\chi^{(m)}$ and $\chi^{(n)}$ we obtain
$\left\langle\log L_{m}\left(\alpha \mid \chi^{(m)}\right)\right\rangle+\left\langle\log L_{n}\left(\alpha \mid \chi^{(n)}\right)\right\rangle \leqslant \log \left(\max \left[1, \mathrm{e}^{-M \alpha}\right]\right)+\left\langle\log L_{m+n}\left(\alpha \mid \chi^{(m+n)}\right)\right\rangle$.
Since $L_{n}\left(\alpha \mid \chi^{(n)}\right) \leqslant \max \left[(2 d)^{n},(2 d)^{n} \mathrm{e}^{\alpha M n}\right]$, the super-additive inequality (3.11) implies (Hille 1948) the existence of the limit in equation (3.8) for all $\alpha<\infty$.

In the next lemma we establish a relation between the quenched average free energies of loops and positive walks. The general idea is to notice that loops are a subset of positive walks, and to construct loops by an operation on suitably unfolded walks.

Lemma 3.2. The quenched average free energy of positive walks exists and is equal to that of loops.

Proof. Inclusion implies the inequalities

$$
\begin{equation*}
L_{n}(\alpha \mid \chi) \leqslant Z_{n}^{\ddagger}(\alpha \mid \chi) \leqslant Z_{n}^{+}(\alpha \mid \chi) . \tag{3.12}
\end{equation*}
$$

To obtain a bound in the other direction we use a process of successive unfolding and reflection. Consider an n-edge positive walk ω. Let $m=\max \left[i \mid \Delta_{i}=1\right]$. If $m=n$ the positive walk starts and ends in $z=0$ and is either a loop or can be converted to a loop by x-unfolding and adding an edge. This would increase the number of vertices in $z=0$ by one. If $m \neq n$, disconnect the walk ω at the m th vertex to form two subwalks ω_{1} and ω_{2}. x-unfold both subwalks and reconnect them. This operation can add up to two additional vertices in the hyperplane $z=0$ but otherwise does not change which vertices are in $z=0$. Let z_{n} be the z-coordinate of the final vertex of the walk. Consider the following cases:
(1) If $z_{n}=1$, add an edge so that the $(n+1)$ th vertex is in $z=0$.
(2) Otherwise unfold the subwalk from the m th to the nth vertex in the z-direction, to satisfy the condition (3.2). Let z_{n} be the new z-coordinate of the nth vertex. If z_{n} is even, let m^{\prime} be the vertex where the walk last crosses the hyperplane $z=z_{n} / 2$. Disconnect the walk at this vertex, to form two subwalks ω_{3} and ω_{4}, x-unfold the two subwalks to form ω_{3}^{\prime} and ω_{4}^{\prime}, reflect the final subwalk ω_{4}^{\prime} in the plane $z=z_{n} / 2$ and reconnect the subwalks. This walk has its final vertex in $z=0$.
(3) If in (2) z_{n} is odd, let m^{\prime} be the last vertex where the walk crosses the plane $\left(z_{n}+1\right) / 2$. Disconnect the walk at this vertex, x-unfold the two subwalks, reflect the final subwalk in the plane $z=\left(z_{n}+1\right) / 2$ and reconnect the two subwalks. This walk will have its final vertex in $z=1$. Add an edge so that the new final vertex is in the plane $z=0$.
These operations involve at most five unfolding operations and the addition of at most five edges and three vertices in the plane $z=0$. Hence
$Z_{n}^{+}(\alpha \mid \chi) \leqslant \mathrm{e}^{\mathrm{O}(\sqrt{n})} \max \left[1, \mathrm{e}^{3 \alpha M}\right] \max \left[L_{n}(\alpha \mid \chi), L_{n+1}\left(\alpha \mid \chi^{\prime}\right), \ldots L_{n+5}\left(\alpha \mid \chi^{\prime \prime}\right)\right]$
where $\chi^{\prime}, \ldots, \chi^{\prime \prime}$ represent augmentations of the labelling χ. Taking logarithms, dividing by n and averaging over the labellings in equations (3.12) and (3.13) gives

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)\right\rangle=\bar{\kappa}(\alpha) \tag{3.14}
\end{equation*}
$$

In the next lemma we derive a result about the α-dependence of $Z_{n}^{+}(\alpha \mid \chi)$ for $\alpha \leqslant 0$.
Lemma 3.3. For $\alpha \leqslant 0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)=\kappa_{d} \tag{3.15}
\end{equation*}
$$

for every labelling χ.

Proof. Clearly $Z_{n}^{+}(\alpha \mid \chi)$ is a monotone non-decreasing function of α so

$$
\begin{equation*}
Z_{n}^{+}(\alpha \mid \chi) \leqslant Z_{n}^{+}(0 \mid \chi) \tag{3.16}
\end{equation*}
$$

for every $\alpha \leqslant 0$, and $Z_{n}^{+}(0 \mid \chi)=c_{n}^{+}$, independent of χ, so that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \leqslant \kappa_{d} \tag{3.17}
\end{equation*}
$$

for all $\alpha \leqslant 0$. Each ($n-1$)-edge positive walk can be converted into an n-edge positive walk with only one vertex in the hyperplane $z=0$ by translating the walk through unit distance in the positive z direction, and adding an additional edge joining $(0,0, \ldots, 0)$ to $(0,0, \ldots, 1)$, and this transformation is a bijection. The partition function $Z_{n}^{+}(\alpha \mid \chi)$ can be bounded below by the number of n-edge positive walks with only the zeroth vertex in $z=0$ which, by the above argument is equal to c_{n-1}^{+}. Hence

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}(\alpha \mid \chi) \geqslant \lim _{n \rightarrow \infty} n^{-1} \log c_{n-1}^{+}=\kappa_{d} \tag{3.18}
\end{equation*}
$$

and the lemma follows from (3.17) and (3.18).
Let $c_{n}^{h}\left(i_{1}, i_{2}, \ldots\right)$ be the number of n-edge walks with $z_{0}=h$, no vertices with negative z-coordinate, and vertices i_{1}, i_{2}, \ldots in $z=0$. We define the partition function

$$
\begin{equation*}
Z_{n}^{h}(\alpha \mid \chi)=\sum_{\left\{i_{1}, i_{2}, \ldots\right\}} c_{n}^{h}\left(i_{1}, i_{2}, \ldots\right) \mathrm{e}^{\alpha \sum_{j} \chi_{i_{j}}} \tag{3.19}
\end{equation*}
$$

and, for fixed α, we define

$$
\begin{equation*}
Z_{n}^{*}(\alpha \mid \chi)=\max _{h} Z_{n}^{h}(\alpha \mid \chi) \tag{3.20}
\end{equation*}
$$

Lemma 3.4. The following equality holds:

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle=\lim _{n \rightarrow \infty}\left\langle n^{-1} \log Z_{n}^{+}(\alpha \mid \chi)\right\rangle \tag{3.21}
\end{equation*}
$$

Proof. Clearly $Z_{n}^{*}(\alpha \mid \chi) \geqslant Z_{n}^{+}(\alpha \mid \chi)$. Let h_{0} be the value of h which maximizes $Z_{n}^{h}(\alpha \mid \chi)$ so that $Z_{n}^{*}(\alpha \mid \chi)=Z_{n}^{h_{0}}(\alpha \mid \chi)$. Notice that h_{0} will in general depend on n, α and χ. If $h_{0}=0$ then $Z_{n}^{*}(\alpha \mid \chi)=Z_{n}^{+}(\alpha \mid \chi)$. Suppose that $h_{0} \neq 0$. Then each walk either has no vertices in $z=0$ or $i_{1} \geqslant 1$. To derive an upper bound we can disconnect the walk at i_{1} into two subwalks. Suppose that the two labellings of the two subwalks are $\chi^{(1)}$ and $\chi^{(2)}$. Both subwalks are positive walks so we have

$$
\begin{align*}
Z_{n}^{h_{0}}(\alpha \mid \chi) & \leqslant c_{n}+\sum_{i_{1} \geqslant 1} \sum_{i_{2}, i_{3}, \ldots} c_{n}^{h_{0}}\left(i_{1}, i_{2}, \ldots\right) \mathrm{e}^{\alpha \sum_{j} x_{i_{j}}} \\
& \leqslant c_{n}+\sum_{i_{1} \geqslant 1} \max \left[\mathrm{e}^{\alpha M}, 1\right] Z_{i_{1}}^{+}\left(0 \mid \bar{\chi}^{(1)}\right) Z_{n-i_{1}}^{+}\left(\alpha \mid \chi^{(2)}\right) \\
& \leqslant \mathrm{e}^{\kappa_{d} n+\mathrm{o}(n)}+\mathrm{e}^{\mathrm{o}(n)} \max _{m}\left[Z_{m}^{+}\left(0 \mid \bar{\chi}^{(1)}\right) Z_{n-m}^{+}\left(\alpha \mid \chi^{(2)}\right)\right] \tag{3.22}
\end{align*}
$$

where the bar on $\bar{\chi}^{(1)}$ indicates that the labelling is being read in reverse order. If $\alpha \leqslant 0$ $Z_{n-m}^{+}\left(\alpha \mid \chi^{(2)}\right)$ is bounded above by $Z_{n-m}^{+}\left(0 \mid \chi^{(2)}\right)$ so that (3.21) is an immediate consequence, when we make use of lemma 3.3. For $\alpha \geqslant 0, Z_{m}^{+}\left(0 \mid \chi^{(2)}\right) \leqslant Z_{m}^{+}\left(\alpha \mid \chi^{(2)}\right)$. Let m^{*} be the value of m which maximizes the final term in (3.22). Then, taking logarithms, dividing by n and averaging over labellings, we have the bound

$$
\begin{align*}
& \left\langle n^{-1} \log Z_{n}^{*}(\alpha \mid \chi)\right\rangle \leqslant \max \left[\kappa_{d},\left\langle n^{-1} \log Z_{m^{*}}^{+}(\alpha \mid \chi)\right\rangle+\left\langle n^{-1} \log Z_{n-m^{*}}^{+}(\alpha \mid \chi)\right\rangle\right]+\mathrm{o}(1) \\
& \quad=\max \left[\kappa_{d}, \frac{m^{*}+\left(n-m^{*}\right)}{n} \bar{\kappa}(\alpha)\right]+\mathrm{o}(1) \\
& \quad=\bar{\kappa}(\alpha)+\mathrm{o}(1) \tag{3.23}
\end{align*}
$$

where we have used lemma 3.2 and the fact that $\bar{\kappa}(\alpha)$ is a non-decreasing function of α. The result follows on letting n go to infinity.

The next lemma gives a lower bound on the free energy of a system with a given fixed quench.

Lemma 3.5.

$$
\begin{equation*}
\bar{\kappa}(\alpha) \leqslant \liminf _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}\left(\alpha \mid \chi_{0}\right) \tag{3.24}
\end{equation*}
$$

for any $\alpha<\infty$ and for almost all fixed quenches χ_{0}.

Proof. For fixed $\alpha<\infty$ and fixed m let $n=m p+q$ with $0 \leqslant q<m$. We consider a subset of n-edge positive walks made up of a concatenation of $p m$-edge loops, labelled $i=1,2, \ldots, p$ and a final q-edge loop, labelled $p+1$. Writing $\chi_{0}=\chi^{(1)}+\chi^{(2)}+\cdots+\chi^{(p+1)}$, where $\chi^{(i)}$ is the labelling of the i th loop, and χ_{0} is the labelling of the concatenated loops, we have

$$
\begin{equation*}
\left.Z_{n}^{+}\left(\alpha \mid \chi_{0}\right)\right) \geqslant\left[\prod_{i=1}^{p} L_{m}\left(\alpha \mid \chi^{(i)}\right)\right] L_{q}\left(\alpha \mid \chi^{(p+1)}\right) \tag{3.25}
\end{equation*}
$$

Taking logarithms and dividing by n we obtain
$n^{-1} \log Z_{n}^{+}\left(\alpha \mid \chi_{0}\right) \geqslant\left[\frac{1}{m(p+q / m)} \sum_{i=1}^{p} \log L_{m}\left(\alpha \mid \chi^{(i)}\right)\right]+n^{-1} \log L_{q}\left(\alpha \mid \chi^{(p+1)}\right)$.
Letting $p \rightarrow \infty$ with m fixed we obtain
$\liminf _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}\left(\alpha \mid \chi_{0}\right) \geqslant \limsup _{p \rightarrow \infty} p^{-1} \sum_{i=1}^{p} m^{-1} \log L_{m}\left(\alpha \mid \chi^{(i)}\right)=\left\langle m^{-1} \log L_{m}(\alpha \mid \chi)\right\rangle$
almost surely, where the equality comes from application of the strong law of large numbers. Letting $m \rightarrow \infty$ and using lemma 3.2 gives (3.24).

In the next lemma we give a corresponding upper bound.
Lemma 3.6.

$$
\begin{equation*}
\bar{\kappa}(\alpha) \geqslant \limsup _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}\left(\alpha \mid \chi_{0}\right) \tag{3.28}
\end{equation*}
$$

for any $\alpha<\infty$ and for almost all fixed quenches χ_{0}.
Proof. For fixed $\alpha<\infty$ and fixed m we write $n=m p+q$ with $0 \leqslant q<m$. We divide an n-edge positive walk into p subwalks of length m and a final subwalk of length q. Again we write $\chi_{0}=\chi^{(1)}+\chi^{(2)}+\cdots+\chi^{(p+1)}$, where $\chi^{(i)}$ is the labelling of the i th subwalk, and χ_{0} is the labelling of the n-edge positive walk. The subdivision gives the inequality

$$
\begin{equation*}
Z_{n}^{+}\left(\alpha \mid \chi_{0}\right) \leqslant Z_{m}^{+}\left(\alpha \mid \chi^{(1)}\right)\left[\prod_{i=2}^{p} Z_{m}^{*}\left(\alpha \mid \chi^{(i)}\right)\right] Z_{q}^{*}\left(\alpha \mid \chi^{(p+1)}\right) \tag{3.29}
\end{equation*}
$$

Bounding the last term, taking logarithms, and dividing by n gives
$\frac{\log Z_{n}^{+}\left(\alpha \mid \chi_{0}\right)}{n} \leqslant \frac{\sum_{i=1}^{p} m^{-1} \log Z_{m}^{*}\left(\alpha \mid \chi^{(i)}\right)}{p+q / m}+\frac{\max [q \log (2 d), q \log (2 d)+\alpha M q]}{m(p+q / m)}$
where we have used the fact that $Z_{m}^{+} \leqslant Z_{m}^{*}$. Letting $p \rightarrow \infty$ with m fixed we have
$\limsup _{n \rightarrow \infty} n^{-1} \log Z_{n}^{+}\left(\alpha \mid \chi_{0}\right) \leqslant \liminf _{p \rightarrow \infty} p^{-1} \sum_{i=1}^{p} m^{-1} \log Z_{m}^{*}\left(\alpha \mid \chi_{i}\right)=\left\langle m^{-1} \log Z_{m}^{*}(\alpha \mid \chi)\right\rangle$
almost surely, where the last equality comes from an application of the strong law of large numbers. Letting $m \rightarrow \infty$ and using lemma 3.4 gives (3.28).

Lemmas 3.5 and 3.6 together prove theorem 2.1.
We now turn to a discussion of the adsorption transition in such random systems. Theorem 2.1 tells us that the limit defining $\bar{\kappa}(\alpha)$ exists and we now derive bounds on its behaviour.

Lemma 3.7. For $\alpha \geqslant 0$

$$
\begin{equation*}
\bar{\kappa}(\alpha) \geqslant \max \left[\kappa_{d}, \kappa_{d-1}+\alpha \mu\right] \tag{3.32}
\end{equation*}
$$

where μ is the expected value of χ_{i}.

Proof. Consider an n-edge walk labelled with a sequence $\chi=\chi_{1}, \chi_{2}, \ldots$ Since $Z_{n}^{+}(\alpha \mid \chi)$ is monotone non-decreasing we have $Z_{n}^{+}(\alpha \mid \chi) \geqslant Z_{n}^{+}(0 \mid \chi)$ for all $\alpha \geqslant 0$. In addition $Z_{n}^{+}(\alpha \mid \chi) \geqslant c_{n}^{+}(1,2, \ldots, n) \mathrm{e}^{\alpha \sum_{i=1}^{n} \chi_{i}}$, corresponding to all vertices being in $z=0$. Taking logarithms, dividing by n and letting n go to infinity we obtain

$$
\begin{equation*}
\kappa(\alpha \mid \chi) \geqslant \max \left[\kappa_{d}, \lim _{n \rightarrow \infty}\left(n^{-1} \log c_{n}^{+}(1,2, \ldots, n)+\alpha n^{-1} \sum_{i=1}^{n} \chi_{i}\right)\right] \tag{3.33}
\end{equation*}
$$

for any labelling χ which satisfies equation (2.9). Then using (2.9) we have (3.32).
Note that the restrictions placed on Ξ ensure that $\mu>0$. Since $\bar{\kappa}(\alpha)$ is constant for $\alpha \leqslant 0$ (from lemma 3.3) but not for $\alpha>\left(\kappa_{d}-\kappa_{d-1}\right) / \mu, \bar{\kappa}(\alpha)$ is a non-analytic function of α and the system exibits a phase transition at α_{q} where $0 \leqslant \alpha_{q} \leqslant\left(\kappa_{d}-\kappa_{d-1}\right) / \mu$. Since $\bar{\kappa}(\alpha) \leqslant \kappa^{+}(\alpha)$ (since $\chi_{i} \geqslant 0$) we have the improved lower bound $0<\alpha_{c} \leqslant \alpha_{q}$.

Finally we discuss the relation between the annealed and quenched cases. The annealed free energy is defined as

$$
\begin{equation*}
\kappa_{a}(\alpha)=\lim _{n \rightarrow \infty} n^{-1} \log \left\langle Z_{n}^{+}(\alpha \mid \chi)\right\rangle \tag{3.34}
\end{equation*}
$$

where the limit can be shown to exist by a suitable modification of the methods used to prove lemmas 3.1, 3.2 and 3.4, where the averaging is inserted at a suitable stage, and where one makes use of the independence of the labelling of subwalks. From lemma 3.3 it is clear that $\kappa_{a}(\alpha)=\bar{\kappa}(\alpha)$ for $\alpha \leqslant 0$. In addition, by the arithmetic mean-geometric mean inequality, $\kappa_{a}(\alpha) \geqslant \bar{\kappa}(\alpha)$ for all α. (Recall our choice of sign in our definition of the free energy.) Hence $\kappa_{a}(\alpha)$ is a non-analytic function of α and has a singularity at α_{a} satisfying $0<\alpha_{c} \leqslant \alpha_{a} \leqslant \alpha_{q}$, where we have made use of the obvious inequality $Z_{n}^{+}(\alpha \mid \chi) \leqslant Z_{n}^{+}(\alpha)$ for any positive α. Clearly $\kappa_{a}(\alpha)=\bar{\kappa}(\alpha)$ for all $\alpha \leqslant \alpha_{a}$.

4. Discussion

We have investigated a self-avoiding walk model of random copolymer adsorption and have shown that the limiting quenched average free energy exists. Moreover the system is thermodynamically self-averaging in that the limiting quenched average free energy is equal to the limiting free energy for almost all comonomer sequences. Although our proof of selfaveraging is for the case of independently labelled vertices, it could be extended to other labelling schemes for which the strong law of large numbers applies. These results have some practical importance in that they show that one has some hope of studying the system by Monte Carlo calculations on a randomly chosen set of comonomer sequences.

The limiting quenched average free energy is non-analytic so the system exhibits a phase transition. We have also considered the annealed case and we have shown that the limiting annealed and quenched average free energies are identical at high temperatures (i.e. in the desorbed phase).

Acknowledgment

We are pleased to acknowledge financial support from NSERC of Canada.

References

Biskup M and den Hollander F 1998 A heteropolymer near a linear interface Preprint
Bolthausen E and den Hollander F 1997 Ann. Prob. 251334
Cosgrove T, Finch N A and Webster J R P 1990 Macromolecules 233353
Garel T, Huse D A, Leibler S and Orland H 1989 Europhys. Lett. 89
Golding I and Kantor Y 1997 Phys. Rev. E 56 R1318
Grassberger P and Hegger R 1995 Europhys. Lett. 31351
Grosberg A, Izrailev S and Nechaev S 1994 Phys. Rev. E 501912
Gutman L and Chakraborty A K 1994 J. Chem. Phys. 10110074
_-1995 J. Chem. Phys. 10310733
Hammersley J M 1957 Proc. Camb. Phil. Soc. 53642
Hammersley J M and Welsh D J A 1962 Q. J. Math. Oxford 13108
Hammersley J M, Torrie G M and Whittington S G 1982 J. Phys. A: Math. Gen. 15539
Hille E 1948 Functional Analysis and Semi-Groups (Am. Math. Soc. Colloq. Publ. 31) (New York: American Mathematical Society)
Joanny J-F 1994 J. Physique II 41281
Kantor Y and Kardar M 1994 Europhys. Lett. 28169
Sommer J U and Daoud M 1995 Europhys. Lett. 32407

Sommer J U, Peng G W and Blumen A 1996 J. Physique II 61061
Srebnik S, Chakraborty A K and Shaknovich E I 1996 Phys. Rev. Lett. 773157
Wang W, Lin Z, Ebner C and Nikas Y 1993 Phys. Rev. E 484622
Whittington S G 1975 J. Chem. Phys. 63779
_—1998 J. Phys. A: Math. Gen. 313769

